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What is Linear Regression?

In classification, we seek to identify the categorical class C,
associate with a given input vector x.

In regression, we seek to identify (or estimate) a continuous
variable y associated with a given input vector x.

y is called the dependent variable.

x is called the independent variable.

If y is a vector, we call this multiple regression.
We will focus on the case where y is a scalar.

Notation:
y will denote the continuous model of the dependent variable

t will denote discrete noisy observations of the dependent
variable (sometimes called the target variable).
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Where is the Linear in Linear Regression?

In regression we assume that y is a function of x.
The exact nature of this function is governed by an
unknown parameter vector w:

y = y(x w)
The regression is linear if y is linear in w. In other
words, we can express y as

y = w'o(x)
where
qb(x) is some (potentially nonlinear) function of x.

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




Linear Basis Function Models

Generally
M—1

w; (X w' (%)

7=0
where @{(X) are known as basis functions.
Typically, @,(X) = 1, so that W, acts as a bias.

In the simplest case, we use linear basis functions :

Py(X) =
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Example: Polynomial Bases

Polynomial basis
functions:

¢J(£L') — Slfj.

These are global

a small change in x
affects all basis functions.

A small change in a
basis function affects y
for all x.
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Example: Polynomial Curve Fitting
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Sum-of-Squares Error Function
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1* Order Polynomial

n Probability & Bayesian Inference
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34 Order Polynomial
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9t Order Polynomial
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Regularization
] ecbinsboemierenee

71 Penalize large coefficient values
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Regularization
s

9th Order Polynomial
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Regularization
T

9th Order Polynomial
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Regularization

9th Order Polynomial

Training
Test

[€p]
= 05} :
2

=25 -20

=30 15

XORK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder

IVERSITE
UNIVERSITY




Probabilistic View of Curve Fitting

Why least squares?

Model noise (deviation of data from model) as

Gaussian i.i.d.
A

t

y(z,w) ,

2

y(‘/BO) W) .
p(t|a:0, ,B) =N (tly(zo, w), ")

where f = LZ is the precision of the noise.
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Maximum Likelihood

p(tjx, w,3) = toly(zn, W), 57")

||::]2

We determine w,, by minimizing the squared error E(w).

N
Inp(t|x,w, ) = z {y(z,,w tn}2 +? In (3 — gln(Zﬂ)

7

BE(W)
Thus least-squares regression reflects an assumption that the
noise is i.i.d. Gaussian.
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Maximum Likelihood

p(tjx, w,3) = toly(zn, W), 57")

||::]2

We determine w,, by minimizing the squared error E(w).

N
Inp(t|x,w, ) = Z {y(z,,w tn}2 +? In (3 — gln(%r)

7

BE(w)

Now given w,,, we can estimate the variance of the noise:

1

1 < ,
— = — ¥ {y(@n, WML) — tn}
B N nz=:1 ML
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Predictive Distribution

n Probability & Bayesian Inference

p(t|3§’, WML, BML) — N (t‘y('x? WML)’ 181\_/&_4)

Generating function
1t Observed data
¢ ~ Maximum likelihood prediction
¢« Posterior over t
0k
-1F

0 e |
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MAP: A Step towards Bayes

Prior knowledge about probable values of w can be incorporated into the
regression:

p(wla) = N(w|0,a 1) = (%)(MH)/2 exp {—%WTW}

Now the posterior over w is proportional to the product of the likelihood
times the prior:

p(wix, t,a, 3) o p(t|x, w, B)p(w|a)

The result is to introduce a new quadratic term in w into the error function
to be minimized-

BE(w 5 Z{y Ty W) —tn }2 + —W W

Thus regulquzed (ridge) regression reflects a 0-mean isotropic Gaussian
prior on the weights.

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




Linear Regression Topics

What is linear regression?
Example: polynomial curve fitting
Other basis families

Solving linear regression problems
Regularized regression

Multiple linear regression

Bayesian linear regression

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition

J. Elder



Gaussian Bases

Gaussian basis functions: Think of these as interpolation functions.
2
( — py) .

These are local:

a small change in x affects
only nearby basis functions.

a small change in a basis
function affects y only for
nearby x.

U and s control location
and scale (width).
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Maximum Likelihood and Linear Least Squares

Assume observations from a deterministic function with
added Gaussian noise:

t=y(x,w)+e where ple|B) =N(el0,57")
which is the same as saying,

p(thx,w,B) = N (tly(x,w), 7).

Given observed inputs, X ={xi,...,xy} , and
targets, t = [t1,...,tn]|T we obtain the likelihood
function

p(tlwivﬁ) — HN@H‘WTqS(Xn)vﬁ_l)'

n=1
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Maximum Likelihood and Linear Least Squares

Taking the logarithm, we get

N
nptlw,) = 3 AN (talw d(x,), 67
n=1

= T Inf - ln(2m) — GEp(w)
where
|
ED(W) — 5 Z{tn T WT¢(XH)}2
n=1

is the sum-of-squares error.

YO R I<E ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition

UUUUUUUUU

J. Elder



Maximum Likelihood and Least Squares

Computing the gradient and setting it to zero yields
N
Vw Inp(tlw,5) = 0 Z {tn — WT¢(Xn)} ¢(Xn)T = 0.
n=1

Solving for w, we get

. The Moore-Penrose
\

' —1 pseudo-inverse, P,
WML, = ((I)T(I)> 't

where

(¢0(X1) P1(x1) - ¢M—1(X1)\
¢o(x2)  P1(x2) -+ Pm—1(x2)

\ do(xn) di(xn) <o buoi(xn) /
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- End of Lecture 8
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Regularized Least Squares

Consider the error function:

Ep (W) + AEw (W)

Data term + Regularization term

With the sum-of-squares error function and a
quadratic regulqrizer we get

—Z{t —wlep(x,)}? + ;\WTW

which is minimized by A is called the
T —1 T regularization
W = ()\I 4 <I>) &Tt.

coefficient.

\

Thus the name ‘ridge regression’
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Regularized Least Squares

With a more general regularizer, we have

— W (xn) 1+ Z\wﬂq

1
2

/
N

e
ZANPAN

(Least absolute shrinkage and selection operator)
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Regularized Least Squares

Lasso generates sparse solutions.

W2, w2 a
Iso-contours
of data term E,(w)
*
W* W
Iso-contour of
regularization term E, (w)
> >
\J N \/ "
Quadratic Lasso
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Solving Regularized Systems

Quadratic regularization has the advantage that
the solution is closed form.

Non-quadratic regularizers generally do not have
closed form solutions

Lasso can be framed as minimizing a quadratic
error with linear constraints, and thus represents a
convex optimization problem that can be solved by
quadratic programming or other convex
optimization methods.

We will discuss quadratic programming when we
cover SVMs
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Multiple Outputs

Analogous to the single output case we have:
p(tlx, W,5) = N(tly(W,x),57'T)
= N{tW'e(x),67'1).
Given observed inputs X = {xy,...,xy5} , and
targets T = [ty,...,tn]"
we obtain the log likelihood function

N
np(TIX,W,5) = > InN(to|W (), 57'T)

n=1
NK_ (B8\ B
= g (%> B 5; [0 — W)
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Multiple Outputs

Maximizing with respect to W, we obtain

—1
W = (<I>T<I>) 7T,

If we consider a single target variable, t,, we see that

1
- (<I>T<I>) dTt, — d't,

where t, = [ti,...,tnk]" , Which is identical with the
single output case.
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Some Useful MATLAB Functions

polyfit
Least-squares fit of a polynomial of specified order to
given data

regress

More general function that computes linear weights for
least-squares fit
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Bayesian Linear Regression

Define a conjugate prior over w:

p(w) = N(w|my, So).
Combining this with the likelihood function and using
results for marginal and conditional Gaussian
distributions, gives the posterior

where p(wlt) = N(w|mpy, Sy)
- —1 T
my = Sy (SO mg + G® t)
Sy' = S;l+pele.
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Bayesian Linear Regression

A common choice for the prior is

p(w) = N(w|0,a"'T)
for which

my = [Sy®'t

Sy ol + 3" ®.

Thus m represents the ridge regression solution with
A=al/p

Next we consider an example ...
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Bayesian Linear Regression
s

O data points observed

Prior Data Space
1
Y
0
-1
-1 0 x 1
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Bayesian Linear Regression

1 data point observed

Likelihood for (x,,t;) Posterior Data Space
1 1
w1 Y
0 0
-1 -1
-1 -1 0 1

YORKQ

UNIVE PT
UNIVE 1T
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Bayesian Linear Regression

2 data points observed

Likelihood for (x,,t,) Posterior Data Space

1

w1

YORKQ

UNIVER i 3
UNIVER 1 Y
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Bayesian Linear Regression

20 data points observed

Likelihood for (x,q,t0) Posterior Data Space
1

w1

Y()m( ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder

UNIVER 3
UNIVER 1 Y

v w
-t | =



Predictive Distribution

Predict t for new values of x by integrating over w:

p(tlt, a, 8) = / p(tlw, B)p(wlt, o, B) dw
— N(tmYé(x), 0% (%))

where

on (%) = + (%) Sno(x).
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Predictive Distribution

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

Samples of y(x,w)

p(tIte.p) |

It . 1 1t

L t
/\E[tlt,a,ﬁ]

| | \_/ |

~1t { -1t
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Predictive Distribution

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points

E[t | t,a,ﬁ] p(t | t,a,ﬁ) Samples of y(x,w)
/ / i :
1} 1
t t
0 ol
-1t -1
; —
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Predictive Distribution

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points

E[t | t,a,ﬁ] p(t | t’“’ﬁ) Samples of y(x,w)
/ / i :
1} 1
t t
0 ol
-1t -1
; —
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Predictive Distribution

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points

Samples of y(x,w)




Equivalent Kernel

The predictive mean can be written
y(x,my) = mﬁqﬁ( ) = Bp(x) 'Syt
= Zﬁqb SN¢ Xn)
N %I

= X, X .
z:l k(x, n)tn Equivalent kernel or
n—

smoother matrix.

This is a weighted sum of the training data target
values, 1.
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Equivalent Kernel
s

k<X7 Xi) — — —

— . \_/

k(Xan)WA@L o~
k(x, x) — /

N/ N ™ —

.

X} X X;

Weight of t, depends on distance between X and X;
nearby X, carry more weight.
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