LINEAR REGRESSION

- Some of these slides were sourced and/or modified from:
 - Christopher Bishop, Microsoft UK

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

What is Linear Regression?

- In classification, we seek to identify the categorical class C_k associate with a given input vector \mathbf{x} .
- In regression, we seek to identify (or estimate) a continuous variable y associated with a given input vector x.
- y is called the dependent variable.
- x is called the independent variable.
- \square If y is a vector, we call this multiple regression.
- We will focus on the case where y is a scalar.
- Notation:
 - y will denote the continuous model of the dependent variable
 - t will denote discrete noisy observations of the dependent variable (sometimes called the target variable).

Where is the Linear in Linear Regression?

Probability & Bayesian Inference

In regression we assume that y is a function of x.
The exact nature of this function is governed by an unknown parameter vector w:

$$y = y(x, w)$$

The regression is linear if y is linear in w. In other words, we can express y as

$$\mathbf{y} = \mathbf{w}^t \phi(\mathbf{x})$$

where

 $\phi(\mathbf{x})$ is some (potentially nonlinear) function of \mathbf{x} .

Linear Basis Function Models

Probability & Bayesian Inference

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- \square where $\phi_{j}(\mathbf{x})$ are known as basis functions.
- \square Typically, $\Phi_0(\mathbf{x}) = 1$, so that W_0 acts as a bias.
- □ In the simplest case, we use linear basis functions : $\phi_d(\mathbf{x}) = x_d$.

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

Example: Polynomial Bases

Probability & Bayesian Inference

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

- ■These are global
 - a small change in x affects all basis functions.
 - A small change in a basis function affects y for all x.

Example: Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

3rd Order Polynomial

9th Order Polynomial

Penalize large coefficient values

Regularization

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Probability & Bayesian Inference

9th Order Polynomial

Regularization

9th Order Polynomial

Regularization

9th Order Polynomial

Probabilistic View of Curve Fitting

- Why least squares?
- Model noise (deviation of data from model) as Gaussian i.i.d.

Maximum Likelihood

Probability & Bayesian Inference

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$

 \square We determine \mathbf{w}_{M} by minimizing the squared error $E(\mathbf{w})$.

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

 Thus least-squares regression reflects an assumption that the noise is i.i.d. Gaussian.

Maximum Likelihood

Probability & Bayesian Inference

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \beta^{-1}\right)$$

 \square We determine \mathbf{w}_{ML} by minimizing the squared error $E(\mathbf{w})$.

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)}_{\beta E(\mathbf{w})}$$

 \square Now given \mathbf{w}_{ML} , we can estimate the variance of the noise:

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\text{ML}}) - t_n\}^2$$

Predictive Distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

MAP: A Step towards Bayes

Probability & Bayesian Inference

Prior knowledge about probable values of w can be incorporated into the regression:

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

Now the posterior over w is proportional to the product of the likelihood times the prior:

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

The result is to introduce a new quadratic term in w into the error function to be minimized:

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

□ Thus regularized (ridge) regression reflects a 0-mean isotropic Gaussian prior on the weights.

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

Gaussian Bases

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}^{-1}$$

- □These are local:
 - a small change in x affects only nearby basis functions.
 - a small change in a basis function affects y only for nearby x.
 - μ_i and s control location and scale (width).

Think of these as interpolation functions.

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

Maximum Likelihood and Linear Least Squares

Probability & Bayesian Inference

 Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

 $oldsymbol{\square}$ Given observed inputs, $\mathbf{X}=\{\mathbf{x}_1,\dots,\mathbf{x}_N\}$, and targets, $\mathbf{t}=[t_1,\dots,t_N]^\mathrm{T}$ we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Maximum Likelihood and Linear Least Squares

Probability & Bayesian Inference

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

□ is the sum-of-squares error.

Maximum Likelihood and Least Squares

Probability & Bayesian Inference

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

□ Solving for **w**, we get

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

The Moore-Penrose pseudo-inverse, Φ^{\dagger} .

lue where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

End of Lecture 8

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

Regularized Least Squares

Probability & Bayesian Inference

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the regularization coefficient.

Thus the name 'ridge regression'

Regularized Least Squares

Probability & Bayesian Inference

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Lasso

Quadratic

(Least absolute shrinkage and selection operator)

Regularized Least Squares

Probability & Bayesian Inference

Lasso generates sparse solutions.

Solving Regularized Systems

- Quadratic regularization has the advantage that the solution is closed form.
- Non-quadratic regularizers generally do not have closed form solutions
- Lasso can be framed as minimizing a quadratic error with linear constraints, and thus represents a convex optimization problem that can be solved by quadratic programming or other convex optimization methods.
- We will discuss quadratic programming when we cover SVMs

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

Multiple Outputs

Probability & Bayesian Inference

Analogous to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

 $lue{}$ Given observed inputs $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^{\mathrm{T}}$

we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n}|\mathbf{W}^{T}\boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\mathbf{I})$$

$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{T}\boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}.$$

Multiple Outputs

Probability & Bayesian Inference

Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

 \square If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

lacksquare where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^{\mathrm{T}}$, which is identical with the single output case.

Some Useful MATLAB Functions

- polyfit
 - Least-squares fit of a polynomial of specified order to given data
- regress
 - More general function that computes linear weights for least-squares fit

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

Bayesian Linear Regression

Rev. Thomas Bayes, 1702 - 1761

Bayesian Linear Regression

Probability & Bayesian Inference

Define a conjugate prior over w:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

lue where

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

$$\mathbf{m}_N = \mathbf{S}_N \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right)$$

 $\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

Bayesian Linear Regression

Probability & Bayesian Inference

A common choice for the prior is

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

□for which

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

 $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

 \Box Thus m_N represents the ridge regression solution with

$$\lambda = \alpha / \beta$$

□Next we consider an example ...

43

Bayesian Linear Regression

Probability & Bayesian Inference

O data points observed

1 data point observed

2 data points observed

20 data points observed

Probability & Bayesian Inference

 \square Predict t for new values of \mathbf{x} by integrating over \mathbf{w} :

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

Probability & Bayesian Inference

Example: Sinusoidal data, 9 Gaussian basis functions,1 data point

Notice how much bigger our uncertainty is relative to the ML method!!

Samples of $y(x, \mathbf{w})$

 Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points

Probability & Bayesian Inference

Example: Sinusoidal data, 9 Gaussian basis functions,4 data points

Probability & Bayesian Inference

Example: Sinusoidal data, 9 Gaussian basis functions,25 data points

The predictive mean can be written

$$y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$

$$= \sum_{n=1}^N \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}_n) t_n$$

$$= \sum_{n=1}^N k(\mathbf{x}, \mathbf{x}_n) t_n.$$
Equivalent kernel or smoother matrix.

□ This is a weighted sum of the training data target values, t_n.

Weight of t_n depends on distance between X and X_n ; nearby X_n carry more weight.

Linear Regression Topics

- What is linear regression?
- Example: polynomial curve fitting
- Other basis families
- Solving linear regression problems
- Regularized regression
- Multiple linear regression
- Bayesian linear regression

